

15EC52

Fifth Semester B.E. Degree Examination, Aug./Sept. 2020 **Digital Signal Processing**

Time: 3 hrs.

USN

1

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of Normalized filters tables is permitted.

Module-1

- a. Compute the circular convolution of the following sequences using DFT and 1DFT method $x(n) = \{1, 2, 3, 4\}$ and $h(n) = \{4, 3, 2, 1\}$. (08 Marks)
 - b. Given $x(n) = \{1, -2, -2, 5, 8, 2\}$, evaluate the given expression $\sum_{k=1}^{\infty} e^{-j2\pi k/3} x(K)$ without computing DFT. (04 Marks)
 - Obtain the relationship of DFT with z-transforms. c.

OR

- 2 Explain frequency domain sampling and reconstruction of signals. (09 Marks) a. Consider the finite length sequence $x(n) = \delta(x) + 2\delta(n-5)$ b.
 - i) Find the 10 point DFT of x(n)
 - ii) Find the sequence that has a DFT $y(k) = e^{-1}$

(07 Marks)

(04 Marks)

Module-2

- Evaluate the linear convolution of the following sequences using DFT and 1DFT method. 3 a. $x(n) = \{1, 2, 3\}$ and $h(n) = \{1, 2, 2, 1\}$. (08 Marks)
 - b. A long sequence x(n) is filtered through a filter with impulse response h(n) to yield the output y(n). If $x(n) = \{1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 1, 1, 3, 1\}$ and $h(n) = \{1, -1\}$. Compute y(n) using overlap save technique. Use only a 5-point circular convolution. (08 Marks)

OR

State and prove the following properties of DFT i) Parseval's theorem (06 Marks) a. ii) Time shifting property. (04 Marks) b. Determine the response of an LTI system with $h(n) = \{1, -1, 2\}$ for an input $x(n) = \{1, 0, 1, -2, 1, 2, 3, -1, 0, 2\}$ use overlap add method with block length L = 4. (06 Marks)

Module-3

- Find the DFT of the sequence using decimation in time FFT algorithm and draw the flow 5 a. graph indicating the intermediate values in the flow graph. $\mathbf{x}(\mathbf{n}) = \{1, -1, -1, -1, 1, 1, 1, -1\}.$ (08 Marks)
 - b. Derive the computational arrangement of 8-point DFT using radix 2 DIF-FFT algorithm. (08 Marks)

OR

- What is Goertzel algorithm? Obtain direct form-II realization of second order goertzel filter. 6 a. (08 Marks)
 - b. Find the 1DFT of the sequence using DIF-FFT algorithm : $X(k) = \{0, 2\sqrt{2}(1-j), 0, 0, 0, 0, 2\sqrt{2}(1+j).$ (08 Marks) 1 of 2

4

(08 Marks)

Module-4

7 a. Draw the block diagrams of direct form – I and direct form – II realizations for a digital IIR filter described by the system function :

$$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{(z - \frac{1}{4})(z^2 - z + \frac{1}{2})}$$

b. Show that the bilinear transformation maps the s-plane to z-plane efficiently in the transformation of analog to digital filter. (08 Marks)

OR

- 8 a. Design a two pass Butterworth analog filter to meet the following specifications :
 i) Attenuation of -1db at 20rad/sec
 - ii) Attenuation is greater than 20db beyond 40rad/sec. (09 Marks)

b. The transfer function of analog filter is $H(s) = \frac{2}{(s+1)(s+2)}$. Find H(z) using impulse invariance method. Show H(z) when $T_s = 1$ sec. (07 Marks)

<u>Module-5</u>

9 a. A low pass filter is to be designed with the following desired frequency response

$$H_{d}(e^{j\omega}) = H_{d}(\omega) = \begin{cases} e^{-j2\omega}; & |\omega| < \pi/4 \\ 0; & \pi/4 < |\omega| < \pi \end{cases}$$

Determine the filter coefficients $h_d(n)$ and h(n) if $\omega(n)$ is a rectangular window defined as follows: $\omega_R(n) = \begin{cases} 1; & 0 \le n \le 4 \\ 0; & \text{otherwise} \end{cases}$ (08 Marks)

b. Realize the direct from the linear phase FIR filters for the following impulse response

$$h(n) = \delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2) + \frac{1}{4}\delta(n-3) + \delta(n-4).$$
 (08 Marks)

OR

- 10 a. The frequency response of an FIR filter is given by :
 - $H(\omega) = e^{-j3\omega} (1 + 1.8\cos 3\omega + 1.2\cos 2\omega + 0.5\cos \omega).$

Determine the coefficients of the impulse response h(n) of the FIR filter. (06 Marks)

- b. Obtain the coefficients of FIR filter to meet the specification given below using the window method :
 - i) Pass band edge frequency $f_p = 1.5 KHz$
 - ii) Stop band edge frequency $f_s = 2KHz$
 - iii) Minimum stop band attenuation = 50db (Hamming)
 - iv) Sampling frequency $F_S = 8KHz$.

(10 Marks)

2 of 2